Een medelid van InMotion, Jorn van Kampen, heeft zijn eerste inzending gedaan over de optimale racestrategie voor een volledig elektrische raceauto. In dit werk presenteert Jorn, in samenwerking met Thomas Herrmann en Mauro Salazar, een efficiënt bi-level framework met globale optimaliteitsgaranties en berekent de optimale stintlengtes, oplaadtijden, en een aantal pitstops voor de Revolution!
Abstract - This paper presents a bi-level optimization framework to compute the maximum-distance stint and charging strategies for a fully electric endurance race car. Thereby, the lower level computes the minimum-stint-time Powertrain Operation (PO) for a given battery energy budget and stint length, whilst the upper level leverages that information to jointly optimize the stint length, charge time, and number of pit stops, in order to maximize the driven distance in the course of a fixed-time endurance race. Specifically, we first extend a convex lap time optimization framework to capture multiple laps and force-based electric motor models and use it to create a map linking the charge time and stint length to the achievable stint time. Second, we leverage the map to frame the maximum-race-distance problem as a mixed-integer second order conic program that can be efficiently solved to the global optimum with off-the-shelf optimization algorithms. Finally, we showcase our framework on a 6 h race around the Zandvoort circuit. Our results show that a flat-out strategy can be extremely detrimental, and that, compared to when the stints are optimized for a fixed number of pit stops, jointly optimizing the stints and number of pit stops can increase the driven distance of several laps.
Ben je geinteresseerd in de rest van het artikel? Deze is hier te vinden!